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This paper proposes an alternate form of the active-domain method [K. Nakahashi
and E. Saitoh, AIAA J. 35, 1280 (1997)] that is applicable to streamwise separated
flows. Named the “marching window,” the algorithm consists of performing pseudo-
time iterations on a minimal width subdomain composed of a sequence of cross-
stream planes of nodes. The upstream boundary of the subdomain is positioned such
that all nodes upstream exhibit a residual smaller than the user-specified convergence
threshold. The advancement of the downstream boundary follows the advancement of
the upstream boundary, except in zones of significant streamwise ellipticity, where
a streamwise ellipticity sensor ensures its continuous progress. Compared to the
standard pseudo-time-marching approach, the marching window decreases the work
required for convergence by up to 24 times for flows with little streamwise ellipticity
and by up to eight times for flows with large streamwise separated regions. Storage
is reduced by up to six times by not allocating memory to the nodes not included in
the computational subdomain. The marching window satisfies the same convergence
criterion as the standard pseudo-time-stepping methods, hence resulting in the same
converged solution within the tolerance of the user-specified convergence threshold.
The algorithm is not restricted to a discretization stencil and pseudo-time-stepping
scheme in particular and is used here with the Yee–Roe scheme and block-implicit
approximate factorization solving the Favre-averaged Navier–Stokes (FANS) equa-
tions closed by the Wilcox k� turbulence model. The eigenstructure of the FANS
equations is also presented. c© 2002 Elsevier Science (USA)

Key Words: convergence acceleration; viscous hypersonic flow; space marching;
pseudo-time stepping; domain decomposition; FANS; RANS.

1. INTRODUCTION

There is little doubt that the most efficient way to solve supersonic or hypersonic flow
with no streamwise ellipticity is through a space-marching method, as numerous extremely
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efficient marching methods developed over the years can attest (see, for example, Refs. [1–
5]). The Navier–Stokes equations at supersonic speeds do, however, exhibit some ellipticity
in the marching direction through the streamwise viscous terms and the subsonic layer of the
boundary layer, and it is necessary for a space-marching method to ignore these mechanisms
by solving a reduced set of the original equations of motion, such as the parabolized Navier–
Stokes equations (PNS). The PNS are defined here as the equation set obtained from the
Navier–Stokes equations by neglecting all viscous terms in the streamwise direction and by
modifying the streamwise momentum equation to prevent any pressure disturbance to travel
upstream, using characteristics splitting or pressure splitting, as suggested by Vigneron
et al. [1]. The applicability of the space-marching methods is limited to flows with neg-
ligible streamwise ellipticity, hence preventing their deployment to many practical flow
fields.

The need to tackle streamwise ellipticity prompted the development of the “global iter-
ation” space-marching methods, in which a sweep is performed several times on the entire
computational domain to permit the upstream propagation of information (see Ref. [6]
for a detailed review). Such are characterized, compared to the pseudo-time-marching
schemes, by a smaller memory requirement due to the storage of temporary variables in
one marching plane only and by an enhanced wave-propagation mechanism in the stream-
wise direction. The reduced Navier–Stokes (RNS) equations, which are derived from the
Navier–Stokes equations by ignoring all streamwise diffusion terms but not altering the
momentum convection terms, are usually solved in this manner, leading to fast convergence
of subsonic/supersonic streamwise unseparated flows [7–9], and even to viscous/inviscid
interactions creating streamwise separation [10, 11]. In a similar vein, Bardina [12] shows
that significant reduction in work is achievable by the use of global marching sweeps to
solve the full Navier–Stokes equations for high-speed flows. However, if not limited to some
predetermined zones of the computational domain, the global iteration approach exhibits
poor efficiency when solving large reverse-flow regions, as the number of sweeps can be-
come excessive due to its dependence on the size of the separation bubble. Further, some
computing might be inefficiently allocated to the nodes downstream of the separation bub-
ble, prior to its convergence. These deficiencies can be remedied by using a space-marching
scheme solving the PNS equations until an elliptic/reverse-flow region is encountered, then
switching to a global iteration RNS method for the length of the elliptic region, iterating
until convergence is reached, and pursuing with the marching PNS scheme (see Miller
et al. [6], for instance). However, such a strategy forces the solution of the PNS equations
in certain regions of the flow field, for which the PNS assumption might induce appreciable
errors. The accuracy of the final solution is hence strongly dependent on the ability of the
method to predict correctly which regions of the flow field can be accurately predicted with
the PNS equations, and which regions require the use of the RNS equations.

Recently, a novel approach to solving inviscid supersonic flow with embedded subsonic
regions has been proposed [13]. The method, named “active domain,” consists of performing
pseudo-time iterations on a small bandlike computational domain that advances in the
streamwise direction every time the residual of the active domain near the upstream boundary
falls below a user-defined threshold. Using sensors based on the streamwise components
of the Mach number, the active-domain boundaries automatically surround any locally
subsonic region on which sufficient iterations are performed to reach steady state. When
the residual inside the subsonic region decreases below the user-defined threshold, the
active domain advances past the subsonic region further downstream. By marching in the
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streamwise direction, the active domain results in up to a 10-fold decrease in work compared
to standard pseudo-time-marching methods for several inviscid problems. However, the
ability of the active domain to solve accurately a streamwise elliptic region is limited by the
accuracy of the sensor responsible for the upstream movement of the upstream boundary of
the active domain. Extension of the active-domain method to viscous flow is hampered by the
difficulty of formulating a streamwise ellipticity sensor that captures all significant upstream
propagating waves while restricting the size of the active domain to a minimum. Success
has been reported in solving viscous flow without streamwise separation by maintaining an
active-domain width equal to the height of the boundary layer [14]. However, to the authors’
knowledge, the active-domain method has not yet been extended to streamwise separated
flows.

This paper proposes an alternate form of the active-domain method, named the “marching-
window” algorithm, which is applicable to streamwise separated flows. Similarly to the
active domain, the marching window performs localized pseudo-time stepping on a subdo-
main composed of a sequence of cross-stream planes of nodes. The width of the marching
window decreases to only a few planes in regions of quasihyperbolic flow and increases
to the size of the streamwise-elliptic region when encountered. However, in contrast to the
active-domain algorithm, the marching window is strictly a convergence acceleration tech-
nique, as it guarantees that the residual of all nodes will be below the user-defined threshold
when convergence is attained. This is accomplished by keeping the residual upstream of
the marching-window subdomain updated at all times, and by positioning the upstream
boundary such that the residual of all nodes upstream is below the user-defined thresh-
old. This results in an algorithm that captures all upstream propagating waves affecting
the residual significantly. The upstream propagating waves can originate from (but are not
necessarily limited to) large subsonic pockets, streamwise separation, streamwise viscous
fluxes, or flux limiters in the streamwise convection flux derivative, for instance. Further,
to enhance the performance of the algorithm, a sensor based on the Vigneron splitting [1]
is developed to advance the downstream boundary when significant steamwise ellipticity is
detected.

Several numerical experiments are presented, ranging from the inviscid solution of a
supersonic inlet with a blunt leading edge to turbulent shock boundary layer interactions with
considerable streamwise flow separation solved with the Favre-averaged Navier–Stokes
(FANS) equations closed by the k� turbulence model of Wilcox [15]. A time-accurate
turbulent flow field using dual time stepping is also investigated. A comparison between
the marching-window cycle, the active-domain cycle (for the inviscid case only), and the
standard pseudo-time-marching cycle is made on the basis of CPU time, effective iterations,
and storage.

2. GOVERNING EQUATIONS

The residual of the full Navier–Stokes equations can be expressed in generalized coor-
dinates in tensor form for any number of dimensions as

R =
d∑

i=1

[
∂Fi

∂Xi
−

d∑
j=1

∂

∂Xi

(
Ki j

∂G

∂X j

)]
− S, (1)
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where the minimization of R is sought and where d refers to the number of dimensions.
Due to the nonlinearity of the system of equations, a fictitious unsteady term ∂Q/∂τ is
necessary to obtain the right physical root from a given set of initial conditions, i.e.,

∂Q

∂τ
= −R. (2)

Even though the marching-window method presented in this paper and the discretization
and pseudo-time-stepping schemes are not linked to some governing equations in particu-
lar, this study focuses on the Favre-averaged Navier–Stokes equations (FANS) closed by
the Wilcox two-equation k� model [15]. The k� turbulence model is chosen due to its
capability of solving accurately a wide range of realistic flow fields, while maintaining a
close resemblance in form to the classical NS equations and avoiding the use of extra low
Reynolds number terms (present in the kε family of turbulence models, for instance). Aside
from their inelegance, additional low Reynolds number terms are detrimental to the perfor-
mance of the algorithm because they increase the complexity of the source terms, which
results in the need for bigger meshes in order to attain grid convergence, and because they
increase the stiffness of the governing equations, which often translates into increased con-
vergence time. This is avoided by the k� modeling, which induces a conservative variable
Q, a convective flux Fi , and a diffusion term G of

Q = 1

J




�

��1
...

��d

� E

�k
��




, Fi = 1

J




� Vi

� Vi �1 + Xi,1 P�

...
� Vi �d + Xi,d P�

� Vi H

� Vi k

� Vi �




, and G =




1
�1
...

�d

T
k
�




, (3)

where the notation Xi, j stands for ∂Xi/∂x j and J is the metric Jacobian, both of which
are obtainable in any dimension following the approach of Viviand [16] and Vinokur
[17]. The total energy, enthalpy, and effective pressure include molecular and turbulent
properties,

E = e + k + 1

2

d∑
i=1

�2
i , P� = P + 2

3
�k, and H = E + P�

�
, (4)

where e is the internal energy of the gas, �i the velocity component in the Cartesian xi

direction, and k the turbulence kinetic energy. Calorically perfect gas assumptions are used
to determine the internal energy from the temperature while an ideal gas law is assumed in
finding P from � and T .

Starting from the tensorial form of the governing equations in Cartesian coordinates, it
can be shown that the diffusion matrix Ki j corresponds in curvilinear coordinates to



144 PARENT AND SISLIAN

Ki j = 1

J




0 0 · · · 0 0 0 0

0 ��β11
i j · · · ��β1d

i j 0 0 0
...

...
. . .

...
...

...
...

0 ��βd1
i j · · · ��βdd

i j 0 0 0

0 ���kβ
k1
i j �k · · · ���kβ

kd
i j �k ��αi j ��

kαi j 0

0 0 · · · 0 0 ��
kαi j 0

0 0 · · · 0 0 0 ��
�αi j




, (5)

where the diffusion coefficients include a molecular and turbulent contribution function of
the eddy viscosity �t = 0.09�k/�, molecular viscosity �, and molecular thermal conduc-
tivity �; that is,

�� = � + �t, �� = � + CP
�t

0.9
, ��

k = � + �t

2
, and ��

� = � + �t

2
, (6)

while α and β are a function of the metrics only.

αi j =
d∑

k=1

Xi,k X j,k and βmn
i j = αi j�

Kr
mn + X j,m Xi,n − 2

3
X j,n Xi,m, (7)

where �Kr
mn stands for the Kronecker delta, which vanishes should m and n differ but assumes

a value of unity otherwise. The source term S is composed of the sum of the baseline Wilcox
k� source terms [15] and an unsteady source term,

S = 1

J




...
0

Pk − �k�

�
k̃

(
5
9 Pk − 5

6 �k�
)


− ∂Q

∂t
, (8)

where the turbulence kinetic energy production term Pk can be shown to correspond to

Pk =
d∑

i=1

d∑
j=1

(
−2

3
�k Xi, j

∂� j

∂Xi
+

d∑
m=1

d∑
n=1

��βmn
i j

∂�m

∂Xi

∂�n

∂X j

)
. (9)

It is noted that in the Wilcox k� model, k̃ is set simply to k, which in the free stream is set
to a small value to prevent a division by zero. We prefer, however, to specify k = 0 in the
free stream and, in order to prevent a division by zero in the dissipation rate source term, to
define k̃ as

k̃ = max

[
k, min

(
kdiv,

��

�

)]
, (10)

where kdiv is a user-specified constant which is generally set lower than one-tenth of the
maximum value of k throughout the boundary layer. This is verified numerically not to
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affect the laminar sublayer but to improve the robustness and efficiency of the integration
significantly. The minimum between kdiv and ��/� is taken so that a clipping occurs only
in nonturbulent flow regions in which an accurate representation of � does not affect the
accuracy of the flow field.

3. DISCRETIZATION

The discretization of all terms in the residual is now presented. The use of tensor form in
writing the governing equations in curvilinear coordinates shown in Eq. (1), along with the
unique compact Ki j matrix described in Eq. (5), simplifies greatly the discretization and
practical implementation of the viscous terms: fewer than 100 lines of code are needed to
implement the viscous contribution of the residual in all dimensions. By referring to the
discretized form of the derivatives along the Xi coordinate as �Xi , the discretized residual
R� can be written as

R� =
d∑

i=1

[
�Xi Fi −

d∑
j=1

�Xi

(
Ki j�X j G

)]− S, (11)

where the diffusion terms are discretized using second-order-accurate centered finite-
difference stencils which, should i = j , give

[
�Xi

(
Kii�Xi G

)]Xi = K Xi +1/2
i i (G Xi +1 − G Xi ) − K Xi −1/2

i i (G Xi − G Xi −1), (12)

or, should i �= j , give,

[
�Xi

(
Ki j�X j G

)]Xi ,X j

= 1

4
K

Xi +1/2,X j

i j (G Xi ,X j +1 + G Xi +1,X j +1 − G Xi ,X j −1 − G Xi +1,X j −1) (13)

− 1

4
K

Xi −1/2,X j

i j (G Xi −1,X j +1 + G Xi ,X j +1 − G Xi −1,X j −1 − G Xi ,X j −1),

where K Xi +1/2 midway between nodes is taken as half the value of K Xi +1 and K Xi , for
example. The convection terms are discretized using a conservative form of the Roe scheme
[18], turned second-order accurate through a symmetric minmod limiter by Yee et al. [19].

[
�Xi Fi

]Xi = 1

2

[
F Xi +1

i − F Xi −1
i −

[
L−1

i |�i |Ni

J

]Xi + 1
2

+
[

L−1
i |�i |Ni

J

]Xi − 1
2
]
, (14)

where |�i | stands for the absolute value of the eigenvalues of the convective flux Jacobian
Ai ≡ ∂Fi/∂Q, and where

N Xi
i = M Xi

i − minmod
(

M Xi −1
i , M Xi

i , M Xi +1
i

)
, (15)

with M Xi
i = L Xi

i ((J Q)Xi +1/2 − (J Q)Xi −1/2). (16)

In the above, the properties at the interface are determined from Roe averaging [18]. For
the minmod limiter to be in pseudo-control-volume form, it is necessary to ensure that all
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metric terms needed to construct the N matrix at one cell interface are measured at that
particular interface.

A small positive value can be added to the eigenvalues to fix the aphysical carbuncle
phenomenon originating from the Roe scheme when tackling certain problems, especially
blunt bodies. This is usually referred to as “entropy correction,” but it is just a convenient way
of adding artificial dissipation to the flux discretization [20] and can significantly deteriorate
the accuracy of the scheme in turbulent boundary layers (see, for example, results obtained
by Parent and Sislian [21]). Unless otherwise specified, no entropy correction term is used
in this paper.

Finally, all partial derivatives of the source terms are discretized using second-order-
accurate three-point stencils, except for the stencil of the time derivative term, which is
limited and is set to

�t Q = 1

�t

[
Qt − Qt−�t + 1

2
minmod(Qt − Qt−�t , Qt−�t − Qt−2�t )

− 1

2
minmod(Qt − Qt−�t , Qt−�t − Qt−2�t , Qt−2�t − Qt−3�t )

]
, (17)

where the minmod function returns the minimum of its arguments if the arguments are all
positive, the maximum if the arguments are all negative, and zero if the arguments are of
mixed signs. It is noted that the second-order contribution in Eq. (17) is in nonconservative
form, but, to the authors’ knowledge, such is unavoidable if no future value of Q (at a
time t + �t) is included in the stencil and a second-order-accurate stencil that results in no
spurious oscillations is desired. The nonconservation of the stencil is weak and numerical
tests indicate that Eq. (17) performs well.

3.1. Eigenstructure of the Convective Flux Jacobian

Since the Roe scheme is used to discretize the convection derivatives, the determination
of the eigenstructure of the convective flux Jacobian Ai ≡ ∂Fi/∂Q is needed. It can be
checked by substitution that the following definition of �i ,

�i = [Vi , Vi , →, Vi + a X̂ i , Vi − a X̂ i , Vi , Vi ]
D, (18)

satisfies the necessary relationship det (Ai − wi I ) = 0 (with wi any element on the diagonal
of �i ) and is hence a valid eigenvalue matrix. Denoting the flow speed by q, the nonmetric
effective speed of sound is found to be equal to

a =
(

P� + 2

3
k + P� E (H − q2 − k)

) 1
2

, (19)

which as might be expected is a function of the kinetic energy of turbulence, contrarily to
the “nonturbulent” speed of sound (here denoted ak=0) encountered in the eigenstructure
of the convection terms of the molecular Navier–Stokes equations. Dividing both sides of
Eq. (19) by ak=0, and after some reformatting, the normalized speed of sound can be shown
to be equal to

ā ≡ a

ak=0
=
(

1 + P� E + 1

3
M2

t

) 1
2

, (20)
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FIG. 1. Normalized speed of sound ā = a/ak=0 versus the turbulent Mach number Mt = √
2k/ak=0, for a

calorically perfect gas according to Eq. (20).

where for a perfect gas, P� E + 1 is equal to the ratio of the specific heats, γ. Figure 1
shows the relationship between ā and the turbulent Mach number for γ = 7/5 and 5/3.
As the turbulent Mach number increases, its influences on ā becomes more predominant
due to the relative speed of the turbulent vortices, with respect to the average vortex speed
of displacement, gradually overtaking the thermodynamic sound speed as the information-
propagation mechanism. For a perfect or real gas, the derivatives of pressure with respect
to the mass-weighted total energy and density are equal to

P� E = 1

� ∂
∂P e(P, � )

and P� = −P� E

(
E − q2 − k + �

∂

∂�
e(P, � )

)
, (21)

where e is the internal energy of the gas and where it is assumed that any thermodynamic
property can be obtained from only two others. The right eigenvectors are not unique, and
each column of the matrix can be multiplied by a constant other than 0; here, we choose
the multiplying constant of each column to keep the same units along each row, except
for the last column which is further multiplied by a2/�, which is found to result in faster
convergence:

L−1
i =




1 0 → 1 1 0 0

�1 l1,1
i a → �1 + aXi,1

X̂ i
�1 − aXi,1

X̂ i
0 0

...
... ↘ ...

...
...

...

�d ld,1
i a → �d + aXi,d

X̂ i
�d − aXi,d

X̂ i
0 0

H − a2

P� E

∑
j l j,1

i av j → H + aVi

X̂ i
H − aVi

X̂ i
a2 − 2a2

3P� E
0

k 0 → k k a2 0

� 0 → � � 0 a2




. (22)

The exactness of the right eigenvectors can be readily verified by the relation �i = Li Ai L−1
i .

Note that the columns of the right eigenvectors containing lm,n
i are not needed in one
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dimension, while in two dimensions lm,n
i takes on the form

lm,1
i = (−1)m+1 Xi,m+1/X̂ i , (23)

and in three dimensions it becomes

lm,1
i = Xi,m+2 − Xi,m+1[∑3

j=1(Xi, j+1 − Xi, j )2
]1/2 , lm,2

i = Xi,m+1lm+1,1
i − Xi,m+2lm+2,1

i

X̂ i
. (24)

In the above, X̂ i corresponds to the magnitude of all derivatives of Xi ; that is,

X̂ i =
(

d∑
j=1

X2
i, j

) 1
2

. (25)

4. PSEUDO-TIME INTEGRATION

Using implicit Euler pseudo-time marching the delta form of the discretized equations
can be shown to correspond to

�n Q

�τ
+

d∑
i=1

[
�Xi �

n Fi −
d∑

j=1

�Xi (Ki, j�X j �
nG)

]
− �n S = −R�, (26)

where to minimize storage requirements and the inversion effort the LHS is approximated
using a multiplication of one-dimensional operators based on a block-implicit approximate
factorization algorithm [22, 23] and a linearization strategy of the viscous terms by Chang
and Merkle [8],

[
d∏

i=1

(
I + �τ�Xi Ai − �τ

d∑
j=1

�Xi

(
Ki j�X j B

)− �τ�Kr
1i C−

)]
�n Q = −�τR�, (27)

where �Kr
1i is the Kronecker delta, B the linearization Jacobian of the viscous terms (B ≡

∂G/∂Q), and C−
i the linearization Jacobian of the negative source terms (∂S−/∂Q) for the

i = 1 sweep but ignored for the other sweeps. Only the negative source terms are linearized
to ensure the stability of the implicit algorithm [24] and they are set to

S− = 1

J




...
−�k�

− 5
6 �k�2/k̃


 − ∂Q

∂t
. (28)

The term �Xi Ai is symbolic and stands for the linearization of the first-order Roe scheme
with the Roe Jacobian locally frozen. The use of a fully linearized Roe scheme is shown
in Batten et al. [20] not to decrease the number of iterations needed for convergence for
several test problems (in some cases it is even detrimental) while requiring more work per
iteration than the frozen Jacobian approach. Hence, the equation to solve at each node for
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the i th sweep can be written as

[
−K

Xi − 1
2

i i B Xi −1 − (J−1L−1|�|L)
Xi − 1

2
i

2(J−1)Xi −1
− AXi −1

i

2

]
�Q̃ Xi −1

i +
[

I

�τXi
− �i1(C−)Xi

+ (K
Xi − 1

2
i i + K

Xi + 1
2

i i

)
B Xi + (J−1L−1|�|L)

Xi − 1
2

i + (J−1L−1|�|L)
Xi + 1

2
i

2(J−1)Xi

]
�Q̃ Xi

i

+
[
−K

Xi + 1
2

i i B Xi +1 − (J−1L−1|�|L)
Xi + 1

2
i

2(J−1)Xi +1
+ AXi +1

i

2

]
�Q̃ Xi +1

i = I

�τXi
�Q̃ Xi

i−1, (29)

where �Q̃ Xi
0 = −�τXi RXi

� and the total flux increment �Q Xi is set to �Q̃ Xi
d .

It is emphasized that the success of approximate factorization relies on the degree of
invariance of the linearization matrices, deterring the inclusion of a linearized form of the
minmod limiter on the implicit side. Numerical experiments show that a “switch” type
of algorithm on the implicit side might induce erratic patterns in the convergence history,
sometimes preventing a converged solution altogether. For similar reasons, the implicit
treatment of the cross-diffusion terms is not recommended, as their linearization necessarily
involves spatial derivatives which are subject to change from iteration to iteration.

Block-implicit approximate factorization is chosen here as it is still one of the most
used techniques for solving the compressible Navier–Stokes equations in the hypersonic
range. However, it is noted that the use of a different pseudo-time-marching algorithm
(such as DDADI [12], MAF(k) [25], or LUSGS [26]) has been observed by the authors not
to affect the performance gains obtained with the marching-window algorithm presented
herein.

4.1. Local Pseudo-Time Step

One commonly used acceleration technique is local pseudo-time stepping based on
the CFL condition which results in a wave traveling speed of one node per iteration for
convection-dominated flows. However, in multiple dimensions, each dimension assumes a
different CFL condition and one faces the dilemma of specifying a wave traveling speed
proportional to the dimension exhibiting the lowest CFL condition, commonly referred
to as a minimum CFL-based local time step, or to the dimension exhibiting the highest
CFL condition, which is referred to as a maximum CFL-based local time step. A for-
mulation including both the minimum and maximum CFL-based approaches can take the
form

�τ = CFL
d

max
i=1

(
1

|Vi | + a X̂ i

)	 d
min
i=1

(
1

|Vi | + a X̂ i

)1−	

, (30)

where a 	 varying between 0 and 1 induces a time step of a magnitude situated, respectively,
between a minimum and a maximum CFL-based time step. While it is acknowledged
that for viscous-dominated regions a local time step based on the Von Neumann number
(VNN) would result in a more equitable wave propagation, which might translate into faster
convergence, for the purposes of this paper Eq. (30) is used exclusively.
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5. BOUNDARY CONDITIONS

A multiblock stratagem is generally required when tackling complex geometries with
a structured mesh, but it can significantly complicate the implementation of the domain
decomposition algorithms presented herein for reasons that shall become apparent shortly.
As a substitute to using multiple blocks connected to the geometry and to one another through
their outer edges (or planes in 3D), any node that is part of the computational domain is
allowed to be either a boundary, inner, or inactive node. Although not as multipurpose as
the multiblock, such an approach can be used to solve a wide variety of flow fields while
retaining all the simplicity of a single block. Figure 2 shows, for example, how the node
types would be distributed for a backward-facing step and a two-element airfoil.

Zeroth-order extrapolation polynomials are used to obtain the properties from the adjacent
inner node at the supersonic outflow boundary (hereafter referred to simply as outflow
boundary), while the properties at the supersonic inflow (hereafter referred to as inflow),
are unaltered in pseudotime. At the symmetry boundary node, a first-order extrapolation
polynomial of the form


 X = 4

3

 X+1 − 1

3

 X+2 (31)

is employed to obtain P�, k, �, � , and the velocity components tangent to the surface, while
the perpendicular velocity component is set to zero. At the wall, the turbulence kinetic
energy and the velocity are fixed to zero, while the effective pressure and temperature (in
the case of an adiabatic wall) are extrapolated as in Eq. (31). Also, following Wilcox [27],
the dissipation rate at the wall is specified to

�w = 36

5

�

�d2
w

, (32)

with dw the distance between the wall node and its nearest neighbor.
It is well-known that an implicit treatment of the boundary nodes results in less prohibitive

restrictions on the pseudo-time-step size for some problems, but when solving strong shock
waves or other highly nonlinear phenomena it is not uncommon for the time-step size to
be limited in any case by the flow physics, even if the time-stepping scheme can be shown

FIG. 2. Examples of the distribution of the node types for a backward-facing step (left) and a two-element
airfoil (right). The number 3 represents a wall condition; 0, inflow; 1, outflow; +, inner nodes; and dots, unactivated
nodes.
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to be Von Neumann unconditionally stable (see the chapter on nonlinear stability in Laney
[28]). Moreover, experience shows that treating the boundary conditions presented herein
in an explicit manner does not restrict the size of the local time step more than implicit
boundary conditions would. For all numerical experiments presented, an explicit treatment
of the boundary nodes is chosen.

6. DOMAIN DECOMPOSITION ALGORITHMS

While domain decomposition is generally used for parallel computing purposes or used
to enable the implementation of different discretization/integration methods in different
subdomains, it is utilized here as a means of accelerating the convergence of quasihyperbolic
systems. We refer to an elliptic system of equations as being quasihyperbolic when some
of the terms, but not all, can be regrouped to form a hyperbolic set of equations, and
whose solution is very close to the solution of the hyperbolic set of terms. For instance,
the steady-state Navier–Stokes equations in the hypersonic regime away from the surfaces
would exhibit a weak influence of the diffusion terms (responsible for the ellipticity of the
system) on the solution compared to the convection terms (the hyperbolic set) and would
hence be classified as quasihyperbolic. Similarly, we refer to an elliptic system of equations
as being quasiparabolic when some of the terms, but not all, can be regrouped to form a set
of parabolic equations, and whose solution is very close to the solution of the parabolic set
of terms. The Favre-averaged Navier–Stokes equations closed by the k� model solved at
steady state over a turbulent flat plate would be termed quasiparabolic, as the streamwise
diffusion terms and the upstream component of the convection terms play a negligible role
compared to the other terms.

The acceleration techniques presented in this paper are aimed at reducing the work needed
to solve quasihyperbolic or quasiparabolic systems through the use of domain decompo-
sition. Nonetheless, the effectiveness of the methods is not limited to entirely quasihyper-
bolic/parabolic systems and extends to systems where some regions are quasihyperbolic/
parabolic and others strictly elliptic. It is emphasized that domain decomposition is used
here solely as a convergence acceleration technique and does not modify the discretized
residual, the time-stepping schemes, and the convergence criterion, except in the case of the
active-domain method. Convergence is attained independently of the acceleration technique
when

� ≤ �verge ∀ inner nodes, (33)

where � is a convergence criterion based on the maximum between the discretized continuity
and energy residuals,

� ≡ max

(∣∣Rcontinuity
�

∣∣
J−1�

,

∣∣Renergy
�

∣∣
J−1� E

)
, (34)

which is divided by Q to obtain units involving only pseudotime (i.e., 1
s ). The user-defined

convergence threshold �verge is typically given a value of 100 1
s , yet this value is not universal

and is dependent on the flow field at hand. Based on dimensional analysis arguments, �verge

can be thought of as the inverse of a time scale common for all nodes, which we formulate
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FIG. 3. Example of computational domain and subdomain notation in two dimensions. The computational
domain limits are denoted by the superscripts E and S.

in terms of the free-stream flow speed and a characteristic length, i.e.,

�verge ∼ 1

10

q∞
Lc

, (35)

where an analogy can be made to the time needed to obtain steady-state flow using an
experimental setup. The characteristic length Lc can be taken as the length of the domain,
for instance. It is noted, however, that the efficiency of the domain decomposition methods
presented herein is dependent on the precision of � as a convergence criterion, and since
this varies from one flow problem to the next, it might not always be possible to achieve at
first the proper compromise between optimal convergence rate and acceptable accuracy by
using Eq. (35).

Identifying the limits of the computational domain by XS
i and XE

i , with i ∈ [1, . . . , d],
and the limits of a subdomain by X s

i and X e
i , with i ∈ [1, . . . , d], the region spanned by the

subdomain is referred to by the notation ‖X s
i ⇔ X e

i ‖∀i , as shown in Fig. 3. For a subdomain
with limits different from the computational domain limits in only one dimension the
notation ‖X s

n ⇔ X e
n‖n is employed, where it is implied that the limits in the dimensions

other than the nth do not differ from those of the computational domain (see Fig. 3).
Also, ‖X s

n‖n is a shortcut that stands for the subdomain ‖X s
n ⇔ X s

n‖n . A property that is
used in conjunction with the domain decomposition algorithms is the number of nodes of
dependence of the discretized residual, br , which is defined as

br ≡




the maximum number of nodes on which the discretized
residual depends on each side of the center node,

or

half the maximum discretization stencil point minus one
if the stencil is symmetric.

(36)

For example, the minmod TVD discretization stencil (which is the longest of all sten-
cils contained in the residual) would give br = 2, but should a first-order Roe scheme be
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employed instead, then br would be set to one. Similarly, the number of nodes of dependence
of the boundary nodes is defined as

bb ≡
{

the maximum number of nodes any boundary node depends
on along one direction,

(37)

which is set to 2, since the properties at the boundary nodes are extrapolated from at most
two inner nodes using a blend of zeroth- and first-order extrapolation polynomials.

When the nodes comprised in the subdomain ‖X s
i ⇔ X e

i ‖∀i are updated in pseudotime,
then it follows from the definition of bb that the boundary nodes situated inside ‖X s

i − bb ⇔
X e

i + bb‖∀i must be updated. The residual, which depends on both inner and boundary
nodes, must then be updated between ‖X s

i − bb − br ⇔ X e
i + bb + br‖∀i . In many cases

where there are no boundary nodes situated in the region ‖X s
i − bb ⇔ X e

i + bb‖∀i , it is
sufficient to update the residual in ‖X s

i − br ⇔ X e
i + br‖∀i . For all methods presented in

this paper, however, this shortcut is not implemented.

6.1. Standard Cycle

The “standard cycle” here implies the usual way of updating the solution in pseudotime,
by first finding the residual for all nodes and then updating the solution. The algorithm can
be written in the following steps:

1. Update the boundary nodes in the domain ‖XS
i ⇔ XE

i ‖∀i .
2. Update the residual in the domain ‖XS

i ⇔ XE
i ‖∀i .

3. Update Q (by pseudo-time stepping) in the domain ‖XS
i ⇔ XE

i ‖∀i .
4. Attain convergence when � ≤ �verge in the domain ‖XS

1 ⇔ XE
1 ‖∀i .

6.2. Multizone Cycle

One strategy toward improving the standard cycle is to divide the computational domain
into a number of nonoverlapping zones of approximately equal size and to update in pseu-
dotime only the zones in which � > �verge. This stratagem has been previously employed
by Sawley and Tegner [29] as a convergence acceleration technique for supersonic flows,
but where the computational domain is split into several blocks, instead of several zones.
Note that a “zone” is defined as a computational domain region that can be bounded by
boundary and/or inner nodes (see, for example, Ref. [30]), while a “block” is defined as a
region delimitated by boundary nodes only. The zone length in each dimension is set to at
most �1, a user-specified constant usually given a value of 20. At each iteration, should the
maximum � inside each zone be greater than the user-specified threshold �verge, the inner
nodes up to the zone boundaries are updated in pseudotime, followed by the update of the
boundary nodes up to the zone boundaries expanded by bb, and the update of the residual up
to the zone boundaries expanded by bb + br . The residual and properties of all other nodes
of the computational domain are not altered. Prior to the first iteration, the computational
domain is divided into a number of nonoverlapping zones of a length in each dimension
no greater than �1, with each zone z defined by the subdomain ‖X z,s

i ⇔ X z,e
i ‖∀i . Then, at

each iteration, the following steps are performed:

1. For each zone z, update Q (by pseudo-time stepping) in the subdomain ‖X z,s
i ⇔

X z,e
i ‖∀i if � > �verge in the subdomain ‖X z,s

i ⇔ X z,e
i ‖∀i .
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2. For each zone z, update the boundary nodes in the subdomain ‖X z,s
i − bb ⇔

X z,e
i + bb‖∀i if � > �verge in the subdomain ‖X z,s

i ⇔ X z,e
i ‖∀i .

3. For each zone z, update the residual in the subdomain ‖X z,s
i − bb − br ⇔ X z,e

i +
bb + br‖∀i if � > �verge in the subdomain ‖X z,s

i ⇔ X z,e
i ‖∀i .

4. Attain convergence when � ≤ �verge in the domain ‖XS
1 ⇔ XE

1 ‖∀i .

It is noted that the multizone cycle ensures the residual on all nodes are up-to-date after each
iteration but, due to the non-self-starting property of this cycle, it is necessary to compute
the residual on the entire domain before the first iteration is performed.

6.3. Active-Domain Cycle

The active domain is an algorithm aimed at decreasing the work needed for convergence
of supersonic inviscid flow [13] and refers to a bandlike computational domain marching in
the flow direction in which localized pseudo-time stepping is performed. The domain width
automatically adjusts to the size of subsonic regions when encountered by monitoring the
streamwise component of the Mach number, as shown in Fig. 4. In our notation, the active-
domain algorithm can be written as follows, denoting the left boundary of the computational
window by X s

1 and the right boundary by X e
1:

1. Update the boundary nodes in the subdomain ‖X s
1 ⇔ X e

1‖1.
2. Update the residual in the subdomain ‖X s

1 ⇔ X e
1‖1.

3. Update Q (by pseudo-time stepping) in the subdomain ‖X s
1 ⇔ X e

1‖1.
4. Redefine the active-domain boundaries:

(a) if M1 < 1.001 for any node in the subdomain ‖X s
1 ⇔ X s

1‖1 then decrease X s
1 by

one;
(b) if M1 < 1.001 for any node in the subdomain ‖X e

1 − (�3 − �0) ⇔ X e
1‖1 then

increment X e
1 by one;

FIG. 4. Schematic of the active-domain cycle with the upstream and downstream boundaries in equilibrium
surrounding an embedded subsonic region. � 0 is the minimum width of the residual monitor subdomain and � 3

is the minimum width of the active domain (when no subsonic region is present).
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(c) if � ≤ �verge for all nodes in the subdomain ‖X s
1 ⇔ X e

1 − (� 3 − � 0)‖1 then incre-
ment X e

1 by �0 and set X s
1 = X e

1 − � 3.
5. Attain convergence when � ≤ �verge for all nodes in the subdomain ‖X s

1 ⇔ X e
1‖1 and

when X e
1 = XE

1 .

The size of the residual-monitor region �0 and the size of the active-domain �3 are user-
specified constants typically given values of 4 and 9, respectively. It is emphasized that the
active domain is restricted to inviscid flow due to the “ellipticity sensors” in Steps 4a and
4b, being based on the streamwise component of the Mach number. For viscous flows, this
would effectively enlarge the active domain to the size of any object due to the vanishing
value of the Mach number in the vicinity of a wall. Aside from being restricted to inviscid
flow, the active-domain algorithm does not guarantee that � ≤ �verge for all nodes of the
computational domain when convergence is attained. This is due to the assumption in Step 4a
that streamwise ellipticity is present locally only when the streamwise component of the
Mach number is less than 1. For inviscid flow, this is exactly true if the discretization stencil
of the streamwise convection derivative is upwinded (such as the first-order-accurate Roe
scheme) but is not true for the Yee–Roe scheme used herein due to the Yee flux limiter
being a function of downstream nodes, even when the flow is locally supersonic. Therefore,
when used in conjunction with a flux limiter inducing streamwise ellipticity in supersonic
flow, the active domain does not meet the necessary convergence criterion for a well-posed
acceleration technique [as stated previously in Eq. (33)].

6.4. Marching-Window Cycle

An alternate form of the active-domain cycle that permits the solution of viscous stream-
wise separated flows and satisfies the convergence criterion of Eq. (33) is here presented.
Named the marching window, the algorithm differs from the active domain on three points:
(i) a dynamic outflow boundary is forced at the downstream boundary of the marching
window (see Fig. 5), (ii) the ellipticity sensor responsible for a shift downstream of the

FIG. 5. Schematic of the marching-window cycle with the upstream and downstream boundaries in equilib-
rium surrounding an embedded streamwise elliptic region which is bounded upstream by the condition � ≤ �verge

and downstream by the condition  ≤ verge. A dynamic outflow boundary condition is forced on all inner nodes
in ‖X e

1‖.
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downstream boundary of the marching window is based on a Vigneron splitting of the
streamwise pressure derivative instead of the streamwise component of the Mach number,
and (iii) the upstream boundary of the marching window is positioned such that � ≤ �verge

for all nodes upstream, instead of being a function of a residual monitor region and a stream-
wise ellipticity sensor based on the streamwise component of the Mach number. At the first
iteration, the upstream boundary of the marching window is set to the upstream boundary
of the computational domain, with the downstream boundary of the marching window sep-
arated from the upstream boundary by bb nodes. Denoting the upstream boundary of the
marching window by X s

1 and the downstream boundary by X e
1, the marching-window cycle

can be written as follows:

1. Update Q (by pseudo-time stepping) in the subdomain ‖X s
1 ⇔ X e

1‖1.
2. Update the boundary nodes in the subdomain ‖X s

1 − bb ⇔ X e
1‖1.

3. Update the residual (hence, � ) in the subdomain ‖X s
1 − bb − br ⇔ X e

1‖1.
4. Redefine the marching-window boundaries:

(a) find the maximum value for X s
1 such that � ≤ �verge for all nodes in the subdomain

‖XS
1 ⇔ X s

1 − 1‖1;
(b) every �2 iterations, if ϕ > ϕverge for any node in the subdomain ‖X e

1 − �3 ⇔
X e

1‖1 or if X s
1 > X e

1 − �3, then (i) increment X e
1 by one, (ii) update the boundary nodes

in the subdomain ‖X e
1 − 1 − bb ⇔ X e

1‖1, and (iii) update the residual in the subdomain
‖X e

1 − 1 − bb − br ⇔ X e
1 − 1‖1.

5. Attain convergence when � ≤ �verge for all nodes in the subdomain ‖X s
1 ⇔ X e

1‖1 and
when X e

1 = XE
1 .

The marching-window cycle is not self-starting and it must be ensured that the residual is
updated for all nodes part of the computational window before the first iteration.

The ability of the marching window to satisfy the convergence criterion of Eq. (33) lies
in Steps 1–3, where Q is updated in pseudo-time, in Step 1, before determining the residual,
in Step 3. Once Q is updated in Step 1 on the subdomain ‖X s

1 ⇔ X e
1‖1, since a boundary

node depends on at most bb neighbors, it is sufficient to update the boundary nodes in
the subdomain ‖X s

1 − bb ⇔ X e
1‖1 to guarantee that all boundary nodes upstream of X e

1

are up-to-date after Step 2. Once the boundary nodes have been updated in the subdomain
‖X s

1 − bb ⇔ X e
1‖1, since the discretized residual depends on at most br neighbors, it is

sufficient to update the residual in the subdomain ‖X s
1 − bb − br ⇔ X e

1‖1 to guarantee that
the residual of all nodes upstream of X e

1 are up-to-date after Step 3. Since � is a function of
the residual, � upstream of X e

1 is up-to-date, and the upstream boundary of the marching-
window X s

1 can be positioned correctly in Step 4a by ensuring for all nodes upstream of X e
1

that � ≤ �verge. This serves two purposes: (i) the convergence criterion of Eq. (33) is satisfied
if convergence is attained in Step 5, and (ii) the upstream boundary of the marching window
moves upstream for any upstream propagating wave that affects the residual significantly and
raises � above the user-defined convergence threshold �verge. Contrarily to the active domain,
the upstream propagating wave is not limited to locally subsonic flow but includes all
significant streamwise elliptic phenomena, such as streamwise separated flow, streamwise
viscous derivatives, or flux limiters in the streamwise convection derivative, for instance.

Step 4b advances the marching-window downstream boundary when the width of the
window is smaller than a user-specified constant �3, or when the streamwise ellipticity
sensor ϕ is greater than the user-specified constant ϕverge for any node part of the subdomain
‖X e

1 − �3 ⇔ X e
1‖1. The streamwise ellipticity sensor ϕ is here chosen as the component
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of the streamwise convection derivative inducing a streamwise ellipticity. This is derived,
following an approach by Vigneron et al. [1], by multiplying by � the effective-pressure
terms in the momentum-fluxes part of the streamwise convection flux F1. The eigenvalues
of the streamwise convective flux Jacobian with � frozen can then be shown to correspond
to

�̃1

[
V1, V1, →, V1 + 1

2
V1 P� E (1 − � ) + ã1 X̂1, V1 + 1

2
V1 P� E (1 − � ) − ã1 X̂1, V1, V1

]D

,

with ã1 =
{

1

4
[V1 P� E (1 − � )]2 + X̂2

1�

[
P� + 2

3
k + P� E (H − k − q2)

]} 1
2

.

Then, for all the eigenvalues to share the same sign (a necessary condition for a hyperbolic
system), it is required that

� = min

(
1, V 2

1
1 + P� E

X̂2
1a2 + V 2

1 P� E

)
= min

(
1,

M2
1 (1 + P� E )

1 + M2
1 P� E

)
, (38)

where the streamwise Mach number M1 corresponds to V1/a X̂1. If multiplying by � the
pressure-derivative-terms part of the momentum components of ∂F1/∂X1 results in a hyper-
bolic system, it follows that the component of the streamwise convection derivative which
induces a streamwise ellipticity is (1 − � ) times the pressure-derivative-terms part of the
momentum components of ∂F1/∂X1. The product is then normalized with �a to obtain
units of inverse pseudotime:

ϕ ≡ 1

�a




d∑
j=1

[
(1 − � )X1, j

∂P�

∂X1

]2



1
2

= X̂1

�a
max

(
0,

1 − M2
1

1 + P� E M2
1

)∣∣∣∣∂P�

∂X1

∣∣∣∣. (39)

The ellipticity sensor ϕ makes two important assumptions: (i) the streamwise ellipticity
originating from the streamwise viscous derivative terms and the flux-limiter part of the
streamwise convection derivative is assumed negligible; and (ii) at the point where ϕ is
evaluated, the solution is assumed to be converged to steady state. The first assumption is
remedied by introducing a minimum width of the marching window, �3, which is typically
given a value ranging from 9 to 15. The second assumption can lead to some performance
degradation of the marching window when the flow near the downstream boundary is far
from convergence. For this reason, the user-adjustable parameter�2 is introduced in Step 4a,
with the consequence of evaluating ϕ every�2 iterations only. Therefore, a high value given
to �2 helps to ensure a more converged solution near the downstream boundary and reduces
the error in the ellipticity sensor ϕ due to temporarily non-steady-state flow. It is suggested
the ellipticity sensor threshold, ϕverge, be given a value of about 100 times the one given to
�verge; that is,

ϕverge ∼ 10
q∞
Lc

, (40)

with Lc a characteristic length of the system. In Step 4b, after the downstream boundary
of the marching window is advanced by one station, the update of the boundary nodes
in the subdomain ‖X e

1 − 1 − bb ⇔ X e
1‖1 and of the residual in the subdomain ‖X e

1 − 1 −
bb − br ⇔ X e

1 − 1‖1 is necessary to ensure that the residual is properly updated in the
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marching window, which is necessary for Step 1 to be performed correctly at the following
iteration.

While the user-definable constants �2, �3, and ϕverge affect the performance of the
marching window cycle as a convergence acceleration technique, they do not affect the
accuracy of the solution when convergence is attained due to the convergence criterion of
Eq. (33) being satisfied.

6.5. Marching Window/Multizone Cycle

The performance of the marching-window algorithm can be enhanced by introducing
multizone decomposition inside the marching window. Before each iteration, the marching-
window subdomain ‖X s

1 ⇔ X e
1‖1 is decomposed into several zones of length no more

than �1 nodes in each dimension. Then, Steps 1–3 of the marching-window cycle (see
Section 6.4.) are replaced by Steps 1–3 of the multizone cycle (see Section 6.2).

6.6. Sweeping Window/Multizone Cycle

Intended for time-accurate simulations using dual-time stepping, the sweeping-window
algorithm is identical to the marching-window algorithm, with the exception that no outflow
boundary condition is forced on the downstream boundary of the sweeping window. When
the converged solution of the previous time level is used as initial conditions for the current
time level, not forcing an outflow condition at the downstream boundary helps to attain
faster convergence due to the initial conditions providing a better “guess” at the downstream
boundary. For the same reasons, the sweeping-window cycle can also be used to gain extra
orders of magnitude of convergence on the solution obtained by the marching window.

7. NUMERICAL EXPERIMENTS

Three steady-state supersonic flow fields and one unsteady flow field are solved using
the different types of cycles mentioned in the last section, and the performance of each is
assessed on the basis of (i) the number of effective iterations, (ii) CPU time, and (iii) max-
imum storage required. To enable a fair comparison between the different cycle strategies,
the number of effective iterations is defined as

effective iterations ≡ number of times an inner node is updated

total number of inner nodes
, (41)

which is a good measure of the cycle performance as long as most of the computing effort is
spent on the pseudo-time stepping instead of the residual, due to the overlap of the residual
determination when a multizone decomposition is used. The implicit scheme used herein
spends three-quarters of its computing effort on the time-stepping side, thereby reducing
the residual overlap overhead work and justifying the use of Eq. (41) as a performance
parameter. In spite of being accurately measured, the number of CPU seconds is not regarded
as a more meaningful performance parameter due to the unavoidable bias that might occur
in the programming of the cycles and the high dependence of the work on the architecture
of the computer. Certain enhancements to the multizone cycle, such as unifying adjacent
zones, could be implemented which would result in a nonnegligible decrease in work, while
the use of a vector computer (of CRAY type) would be an advantage to the longer loops
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present in the standard cycle. Therefore, both the number of effective iterations and the
CPU time are monitored for all test cases.

7.1. Inviscid Supersonic Inlet with a Blunt Leading Edge

A first comparison between the different cycles is performed for a steady-state invis-
cid flow over a 1-m-long supersonic inlet. Air enters the channel at a Mach number of
5, a pressure of 4 kPa, and a temperature of 240 K. The grid size is varied between
128 × 64 and 512 × 256 nodes. The user-defined parameters of interest are set to (when
applicable)

	 = 0.5, �verge = 100
1

s
, ϕverge = 5000

1

s
, �0 = 4,

�1 = 20, �2 = 3, and �3 = 9,

where the value of 0.5 given to 	 translates into a geometric average between the minimum-
CFL-condition-based pseudo-time step and the maximum-CFL-condition-based pseudo-
time step. The convergence threshold �verge is low enough that a decrease in �verge would
not result in any noticeable difference of the pressure contours shown in Fig. 6. It is noted
that the use of the entropy correction by Yee et al. [19] with �̃ = 0.2 is here used to avoid
a carbuncle phenomenon near the blunt leading edge.

Table I shows the CPU time and effective iterations needed to reach convergence for
the marching-window, marching-window/multizone, active-domain, multizone, and stan-
dard cycles. Due to the CFL = 1 restriction on the traveling speed of the waves in the flow
field to approximately one grid line per iteration, the standard cycle requires a number
of iterations proportional to the number of grid lines along the streamwise direction, i.e.,

FIG. 6. Pressure contours for the blunt leading edge inviscid supersonic inlet case obtained using a 512 ×
256 grid. The inflow conditions correspond to M = 5, P = 4 kPa, and T = 240 K. No difference is noticeable
between the pressure contours obtained with the different cycles.
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TABLE I

Effective Iteration Count, Work, and Storage Comparison at a CFL Number of Unity,

for the Blunt Leading Edge Inviscid Supersonic Inlet Case

128 × 64 nodes 512 × 256 nodes

Cycle Iter. Work Stor. Iter. Work Stor.

Marching window/multizone 34.4 1.0 0.11 44.9 22.2 0.91
Marching window 40.4 1.1 0.11 86.8 38.9 0.91
Active domain 55.6 1.3 0.10 102.2 39.2 0.81
Multizone 158.5 3.8 1.0 318.6 131.6 16.0
Standard cycle 293.0 6.5 1.0 1391.0 524.3 16.0

293 iterations for a 128 × 64 mesh to 1391 iterations for a 512 × 256 mesh. The multizone
cycle suffers the same symptoms but has the extra advantage of not allocating work to
the zones where all nodes exhibit a � smaller than the user-specified threshold, thereby
reducing the computing to a smaller and smaller domain as the iteration count progresses
and the nonconverged flow region moves toward the domain exit. This results in the im-
pressive savings in iteration count of 1.8 times for the coarse mesh and of 4.4 times for the
fine mesh. Both the active-domain cycle and the marching-window cycle decrease further
the iteration count by allowing a computational window to travel in space following the
propagation of the waves. This results in a decrease in effective iterations, compared to
the standard cycle using the 512 × 256 mesh, of 14 and 16 times for the active domain
and marching window, respectively. Furthermore, the use of multizone decomposition in-
side the marching window focuses the pseudo-time stepping effort to the regions requiring
more iterations to reach convergence, such as the region of subsonic flow upstream of the
inlet blunt leading edge, hence resulting in only 45 effective iterations to reach conver-
gence and an overall reduction in effective iterations of 31 times compared to the standard
cycle.

Remember that the standard cycle, the multizone cycle, and the marching-window cycle
(with and without multizone decomposition) all guarantee that

� ≤ �verge ∀ inner nodes,

once convergence is reached [as previously stated in Eq. (33)], which is a necessary condition
for a well-posed acceleration technique. The latter is not a property of the active-domain
method when the discretization stencil for the streamwise convection derivative depends
on downstream nodes in locally supersonic flow. The Yee TVD limiter used here has this
property, and the active-domain algorithm induces a converged residual that does not satisfy
the convergence criterion of Eq. (33).

It could be argued that raising the CFL number would improve the standard cycle over the
others for this particular case. The effect of a change of CFL number was not investigated
but is addressed in the subsequent test problems. It is noted that for many realistic problems
dominated by nonlinear phenomena, nonlinear stability conditions, restrict the use of high
CFL numbers until the waves have started to settle down considerably.
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FIG. 7. Mach number contours of the backward-facing step case, obtained using a 256 × 128 node mesh. The
inflow conditions are set to a Mach number of 2, a Reynolds number per meter of 5 million, and a temperature of
300 K.

7.2. Backward-Facing Step

Although the gains in computing efficiency obtained through the marching-window cycle
might be expected for an entirely supersonic problem without any reverse-flow regions, we
proceed to show in this section that the marching window can reduce convergence time
considerably even when a substantial portion of the flow field is separated.

Air enters the computational domain at a Mach number of 2, a Reynolds number per meter
of 5 million, and a temperature of 300 K. Symmetry conditions are applied at x2 = −0.015 m
and at x2 = 0.03 m, inflow at x1 = −0.067 m, and outflow at x1 = 0.2 m, and an adiabatic
wall boundary condition is in effect elsewhere. The Mach number contours shown in Fig. 7
show the limits of the recirculation region (0 ≤ x1 ≤ 0.04) in which 25% of the grid lines
along X1 and 50% of the grid lines along X2 are placed. The investigation is performed
using a 256 × 128 mesh, clustered at the surfaces; it is noted that no significant difference
in the trends is observed using a coarser mesh of 128 × 64 nodes.

A minimum/maximum CFL averaged local time step as specified in Eq. (30) is used for
all cycles, and the convergence threshold along with the other user-defined constants are
specified to

	 = 0.5, �verge = 100
1

s
, ϕverge = 5000

1

s
, �1 = 20, �2 = 3, and �3 = 9.

When a variable CFL number is used, it is set to a function of �max as opposed to the
iteration count to enable a more adequate comparison between the different cycles, since
the convergence history has a different dependence on the iteration count for each cycle.
Note that �max stands for the maximum value of � in the computational window, which
corresponds to the entire domain for the multizone and standard cycles. In this case, a �max

varying between 105 1
s and 103 1

s is made to induce a CFL number varying between 1 and
10. The variation in CFL number is necessary due to nonlinear stability restrictions on the
time step size, and it is assumed that an inverse relationship exists between �max and the
maximum allowable CFL number for stable and predictable convergence.
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TABLE II

Effective Iteration Count, Work, and Storage Comparison for the Backward-Facing

Step Case for a 256 × 128 Grid

CFL = 1 1 ≤ CFL ≤ 10

Cycle Iter. Work Stor. Iter. Work Stor.

Marching window/multizone 459 2.0 1.0 229 1.0 1.0
Marching window 1166 3.9 1.0 355 1.2 1.0
Multizone 1259 5.9 4.3 698 3.2 4.3
Standard cycle 3164 10.4 4.3 1054 3.5 4.3

The influence of a change in CFL number on the efficiency of the different cycles can
be seen in Table II. The marching-window/multizone cycle at a CFL of unity requires
6.9 times fewer iterations to reach convergence than the standard cycle. Yet, if the CFL is
varied between 1 and 10 the speedup is reduced to 4.6 times. As expected, a rise in the
CFL number greatly helps the propagation of the waves along the streamwise direction
for the standard cycle, while the transmission of the streamwise information is already
adequate at a CFL of unity for the marching-window and marching-window/multizone
cycles. Nevertheless, the recirculation region is the iteration bottleneck of this problem and
the number of steps necessary to solve it is similar for all approaches. For the standard
cycle, since the entire computational domain is computed at every step, a region of slow
convergence somewhere in the flow field translates in a very high number of effective
iterations, whether the region of slow convergence is very small or not. On the other hand,
the marching-window algorithm focuses the effort on the region of slow convergence,
consequently resulting in much improved algorithm efficiency.

7.3. Concatenated Channels: Shock/Boundary Layer Interactions

The ability of the marching-window algorithm to solve shock/boundary layer interactions
at hypersonic flow conditions is now tested. The geometry involves the concatenation of
a 1.0 × 0.5 m channel to a 0.69 × 0.38 m channel through a 37◦ compression ramp. Air
enters the first channel at uniform conditions of M = 5, P = 1000 Pa, and T = 450 K.
Fixed temperature (Twall = 450 K) wall boundary conditions are applied on bottom and top
boundaries, with a grid clustered at both walls. As for the backward-facing step case, a
geometric averaged local time step is utilized to enhance wave propagation through high
aspect ratio cells, while the other user-adjustable parameters are set to

	 = 0.5, �verge = 100
1

s
, ϕverge = 5000

1

s
, �1 = 20, �2 = 3, and �3 = 9.

From the effective pressure contours of Fig. 8, two recirculation regions are visible: one
at the start of the shock formed by the 37◦ wedge, and one at the point where the shock
impinges on the top wall boundary layer. Both recirculation zones are of appreciable size
due to the very low Reynolds number of the flow, which helps generate thick incoming
boundary layers. The major obstacle in converging this flow field efficiently comes from
the high difference in time scales between the convection-dominated flow in the middle of
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FIG. 8. Effective pressure contours of the concatenated channels case, obtained using a 512 × 256 mesh. Air
enters the first channel at a Mach number of 5, a pressure of 1000 Pa, and a temperature of 450 K.

the channels and the viscous-dominated recirculation zones. Time-accurate simulations of
a similar problem indicate that the amount of time required for the separated flow regions
to reach steady state is typically one order of magnitude more than the time needed for
the shock structure to establish itself. Consequently, one would prefer high pseudo-time
steps to be used in the recirculation zones for fast convergence, but unfortunately the
step size is limited by nonlinear stability restrictions, which are of importance especially
near the nonconverged shock waves. For these reasons, it is not surprising that so many
iterations are needed for the standard cycle to reach convergence, as Table III shows:
4547 iterations for a CFL number varying between 0.1 and 1 and 2342 iterations for the
range 0.1 ≤ CFL ≤ 10. Similarly to the backward-facing step, the CFL number is linked to
�max such that at �max = 104 1

s , the CFL number is 10, and at �max = 106 1
s , the CFL number

is 0.1.
The marching-window/multizone cycle performs particularly well, as the work is focused

on the reverse-flow regions, while the rest of the domain is quasihyperbolic/parabolic and
needs only a small amount of work to reach convergence (see Fig. 9). The use of the

TABLE III

Effective Iteration Count, Work, and Storage Comparison

for the Concatenated Channels Test Case

0.1 ≤ CFL ≤ 1 0.1 ≤ CFL ≤ 10

Cycle Iter. Work Stor. Iter. Work Stor.

Marching window/multizone 431 1.9 1.0 219 1.0 1.0
Marching window 1111 4.0 1.0 444 1.7 1.0
Multizone 1571 7.8 6.2 1215 5.9 6.2
Standard cycle 4547 15.5 6.2 2342 8.0 6.2

Note. The mesh size is 256 × 128 nodes.
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FIG. 9. Location of the marching-window upstream and downstream boundaries for the concatenated channels
case using the marching-window/multizone cycle, with a variable CFL number, i.e., 0.1 ≤ CFL ≤ 10. Notice the
high amount of work spent on the recirculation zones in the vicinity of X1 ∼ 128 and X1 ∼ 218, while very few
steps are needed to converge the quasihyperbolic/parabolic regions.

marching window coupled with a multizone strategy makes possible a decrease in effective
iterations of eight times compared to the standard cycle, independently of the CFL number
used, as shown in Table III.

There might be doubts as to the adequacy of a varying CFL number function of �max as a
means of comparing different cycles. For this reason, additional simulations involving the
marching-window/multizone and standard cycles are performed in which the CFL number is
made a function of the iteration count and raised to 10 as rapidly as the stability conditions
permit. Some 1930 iterations for the standard cycle are needed for convergence while
197 iterations are needed for the marching-window/multizone cycle. Again, while a slight
increase in efficiency for the standard cycle is apparent, approximately the same amount is
noticeable for the marching-window/multizone cycle.

As in the previous test cases, a convergence criterion of �verge = 100 1
s is found necessary

to obtain reasonable accuracy, and no discernible difference is observed between the con-
tours of properties obtained with the different cycles. Even if both the marching-window
and the standard cycle guarantee the convergence criterion of Eq. (33) will be satisfied once
convergence is attained, the governing equations have multiple roots due to their nonlinear-
ity, and a different flow solution could be obtained by the different cycle strategies. For all
test cases presented here, however, it is verified that the same root is obtained independently
of the acceleration technique.

The sensitivity of the user-adjustable parameters for the marching-window cycle is as-
sessed for this test case in Table IV. It is seen that the performance of the marching window
is not affected considerably by a change in the average zone length �1 or by a change in
�2, the latter being the number of iterations before a reading of the streamwise ellipticity
sensor � is taken. For �1 varied from 10 to 40, the number of effective iterations is observed
to change by only 12%, and for �2 varied from 1 to 15, the number of effective iterations
increases by 14%. On the other hand, the parameters �3 and ϕverge are seen to affect the
performance of the algorithm considerably. Raising �3 from 9 to 36 increases twofold the
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TABLE IV

Sensitivity of the Effective Iteration Count and Work to the User-Defined Constants

for the Concatenated Channels Test Case

� 1 � 2 � 3 verge,
1
s

Work Iter.

20 3 9 5 × 103 1.00 1.0
10 3 9 5 × 103 1.20 1.12
40 3 9 5 × 103 1.00 1.02
20 15 9 5 × 103 1.15 1.12
20 1 9 5 × 103 0.96 0.98
20 3 5 5 × 103 1.46 1.41
20 3 18 5 × 103 1.19 1.24
20 3 36 5 × 103 1.89 1.99
20 3 9 5 × 102 1.33 1.40
20 3 9 5 × 104 1.57 1.54

Note. The marching-window/multizone cycle is used with a mesh size of 256 × 128 nodes and a
CFL range of 0.1 ≤ CFL ≤ 10.

number of effective iterations, and increasing ϕverge tenfold results in an increase of 54% in
the effective iterations count. The high sensitivity of the effective iterations on either �3 or
ϕverge is due to the high dependence of the width of the marching window on these param-
eters. When the marching window encloses too tightly a zone of streamwise ellipticity, the
solution needs to be converged locally several times, hence increasing the work. When the
marching window overestimates the size of a streamwise elliptic region, the high number
of iterations needed locally to converge a streamwise elliptic region is spent on a larger
portion of the computational domain, hence resulting in decreased performance.

7.4. Time-Accurate Simulation of an Exploding Cavity in a Supersonic Stream

The performance of the different cycles on a time-accurate simulation of a stagnant high-
pressure flow pocket exploding into a Mach 2 air stream is investigated in this section.
The computational domain has dimensions as shown in Fig. 10 and is spanned by a grid

FIG. 10. Effective pressure contours of the exploding cavity case using a mesh composed of 256 × 128 nodes,
and a time step of 1.5 �s. At t = 0, the flow outside the cavity is air uniformly distributed at P = 10 kPa, T = 300 K,
and M = 2, while the air inside the cavity is set to P = 100 kPa, T = 2000 K, and M = 0.
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TABLE V

Effective Iteration Count, Work, and Storage Comparison

for the Time-Accurate Simulation of an Exploding Cavity

Cycle Iterations Work Storage

Multizone 1505 1.0 5.0
Sweeping window/multizone 2034 1.5 1.0
Sweeping window 2980 1.9 1.0
Standard cycle 4418 2.0 5.0

Note. The CFL number is unity.

composed of 256 × 128 nodes, of which 110 × 38 are allocated to the cavity. Inflow, outflow,
and symmetry conditions are applied to the left, right, and top boundaries, respectively, while
an adiabatic wall condition is in effect elsewhere. The mesh is clustered at the inflow and at
all surfaces to capture the turbulent boundary layer correctly and is not altered in time. The
flow field at t = 0 for x2 ≥ 0 is set to a pressure of 10 kPa, a temperature of 300 K, and a
flow Mach number of 2, while for x2 < 0, the pressure, temperature, and Mach number are
set to 100 kPa, 2000 K, and 0, respectively. The solution is iterated in pseudotime starting
from the converged solution of the previous physical time step until the maximum value
� in the computational domain falls below �verge. The physical time step, �t , is fixed to
1.5 �s, while the following user-defined parameters are in use:

	 = 0.3, �verge = 100
1

s
, ϕverge = 5000

1

s
, �1 = 20, �2 = 3, and �3 = 9.

Due to the strict convergence criterion utilized and the use of the same residual, all accel-
eration techniques result in the same answer at all time steps despite noticeable differences
in CPU work, as Table V attests: a twofold decrease in work is achieved through the use
of the multizone cycle, while the sweeping-window/multizone cycle decreases the work
by one-quarter. The performance of the sweeping window is not particularly good for this
problem, as the wave-propagation direction is more toward time than in the stream-wise co-
ordinate due to the relatively small physical time step. Furthermore, since only 20 effective
iterations are needed on average per time level, the overhead work induced by sweeping
becomes more important, as the greater discrepancy observed for this case between the re-
duction in effective iterations and CPU work shows. There is, nonetheless, a nonnegligible
fivefold reduction in storage when using the sweeping window.

8. SUMMARY AND CONCLUSIONS

A novel acceleration technique is presented which is aimed at accelerating the conver-
gence of the Favre-averaged Navier–Stokes equations in the supersonic/hypersonic regime
for flow fields with large streamwise separated flow regions. Similarly to the active-domain
method [13], the marching window iterates in pseudotime a bandlike computational do-
main of minimal width which adjusts to the size of the streamwise elliptic regions when
encountered. However, contrarily to the active-domain method, it is shown that the marching
window guarantees the residual on all nodes to be below a user-defined threshold when con-
vergence is reached and, hence, results in the same converged solution (within the tolerance
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of the convergence criterion) as the one obtained by standard pseudo-time-marching meth-
ods. Further, a streamwise ellipticity sensor based on the Vigneron splitting [1] is developed
which ensures that the downstream boundary of the marching window advances sufficiently
so that regions of significant streamwise ellipticity are contained within the marching-
window subdomain. It is noted that while the Vigneron splitting sensor does not capture all
possible streamwise elliptic phenomena, this does not affect the accuracy of the final solu-
tion and only affects the performance of the marching window as an acceleration technique.
Also, a multizone decomposition is implemented inside the marching window to restrict the
computing to the zones where the residual is above the user-defined convergence threshold.
This is shown to further decrease the work needed for convergence by close to two times
for the problems shown herein.

The use of the marching window with multizone decomposition on a backward-facing
step and a shock boundary layer interaction flow field (where one or several large streamwise
separated regions are present) reveals a four- to sixfold decrease in storage and a four- to
eightfold decrease in work compared to the standard cycle. The proposed algorithm is also
shown to work well at a low CFL number in regions of quasihyperbolicity/parabolicity and
is recommended for stiff problems with high nonlinear stability restrictions on the time-step
size. A variant of the marching window designed for time-accurate simulations is observed
to result in a fivefold reduction in storage and 25% reduction in work for the time-accurate
exploding cavity case investigated herein. The reduction in computational work through
the use of the marching window is made possible by limiting the high number of iterations
needed to converge the streamwise separated regions to the region in question. The amount
of storage needed is also significantly reduced if no memory is allocated to the nodes outside
of the marching-window subdomain.

The marching window does not impose any restriction on the discretization-stencils part
of the residual or on the pseudo-time-stepping method. While not implemented here, the
numerous acceleration techniques available for pseudo-time stepping (such as multigrid,
block relaxation [31], preconditioning, Newton–Krylov, etc.) can be used in conjunction
with the marching window. Furthermore, the marching window is not limited to the Favre-
averaged Navier–Stokes equations and its extension to other governing equations would
only require a redefinition of the ellipticity sensor shown in Eq. (39).

The performance of the algorithm is seen to be sensitive to the user-defined ellipticity
threshold constant ϕverge and the marching window minimal width �3. It is unclear at this
stage by how much these parameters would need to be altered for very different flow proper-
ties and physical domain sizes. The dependency on the problem setup seems not too severe,
as the same values for the user-specified constants are used for all cases shown in this paper.
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